The Universal Ψ Equation

Edoardo Livolsi — Independent Researcher

ORCID: 0009-0009-1266-8204

Closed and Self-Referential Variational Principle

\[ \frac{\delta}{\delta \Psi^\dagger(x)} \Bigg\{ \Big| \sum_{i,j} \Psi_i^\dagger \Gamma \Psi_j \Big|^2 - \lambda_1 \sum_i (\Psi_i^\dagger \Psi_i - 1)^2 - \lambda_2 \sum_{i,j,k} \mathrm{Tr}\!\left[ \Gamma (\Psi_i \Psi_j^\dagger - \Psi_k \Psi_i^\dagger) \right]^2 \Bigg\} = 0 \]

The Universal Psi Equation defines the informational dynamics of the universe as a closed variational system. All physical constants and interactions emerge from internal coherence of Ψ — no external parameters are required.

The equation unifies the four interactions — electromagnetic, weak, strong, and gravitational — within a single coherent informational field. All invariants arise mathematically from the internal structure of Ψ itself.

 

View Publications on ORCID

Author

Edoardo Livolsi

Independent Researcher — Prague, Czech Republic

ORCID: 0009-0009-1266-8204

DOI: 10.5281/zenodo.17340646

Email: edoardopraga@gmail.com